Общество с ограниченной ответственностью «Специальное конструкторское бюро Стройприбор»

ОКП 42 7611

УТВЕРЖДАЮ Директор Челябинского 000 «СКБ Стройприбор» Ицие В.В. Гулунов MIKE 05 2012 г. Стройал

Дефектоскоп сварных соединений

ΑΡΜC-ΜΓ4

Руководство по эксплуатации КБСП.427611.046 РЭ

Паспорт

Челябинск 2012

внимание!

1 В приборе используется литий - полимерный аккумулятор. При поставке прибора аккумулятор заряжен не полностью.

Срок службы аккумулятора при правильной его эксплуатации не менее 7 лет. При эксплуатации прибора соблюдать следующие правила:

1.1 Перед использованием прибора аккумулятор зарядить, время полной зарядки аккумулятора не более четырех часов. Для зарядки аккумулятора применять зарядное устройство, поставляемое с прибором.

1.2 При длительном хранении прибора аккумулятор зарядить до 80 %, время зарядки при полностью разряженном аккумуляторе один час. В процессе хранения проверять состояние аккумулятора не реже одного раза в шесть месяцев.

1.3 Не допускать глубокого разряда аккумулятора. При получении сообщения о низком уровне заряда или при аварийном отключении прибора зарядить аккумулятор в кратчайшие сроки.

2 Для эффективного использования дефектоскопа требуются следующие условия:

2.1 Знания принципа работы, характеристик и способов применения дефектоскопа. (Вся необходимая информация находится в данном руководстве по эксплуатации).

2.2 Наличие методик по ультразвуковому контролю сварных соединений.

РТМ 393-94 Руководящие технические материалы по сварке и контролю качества соединений арматуры и закладных изделий железобетонных конструкций.

ГОСТ 23858-79 Соединения сварные стыковые и тавровые арматуры железобетонных конструкций. Ультразвуковые методы контроля качества. Правила приемки.

СТО 02495307-002-2008 Стандарт организации. Ультразвуковой контроль сварных соединений арматуры в железобетонных конструкциях.

2.3 Оператор должен знать общие принципы теории распространения ультразвуковых колебаний, в том числе – понятия скорости звука, затухания, отражения и преломления волн, ограниченности действия звукового луча и пр.

Оператор должен пройти соответствующее обучение для компетентного использования оборудования и приобретения знаний об общих принципах ультразвукового контроля, а также частных условиях контроля конкретного вида изделий.

ФЕ ПО ТЕХНИЧЕСК	ЕДЕРАЛЬНОЕ АГЕНТСТВО ОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ
об утве	СЕРТИФИКАТ рждении типа средств измерений № 50931-12
Срок действия утверждения ти	па до 10 июля 2027 г.
НАИМЕНОВАНИЕ И ОБОЗНА Дефектоскопы сварных сое	ЧЕНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ динений АРМС-МГ4
ИЗГОТОВИТЕЛЬ Общество с ограниченной от Стройприбор" (ООО "СКБ Ст	гветственностью "Специальное конструкторское бюро ройприбор"), г. Челябинск
ПРАВООБЛАДАТЕЛЬ	
КОД ИДЕНТИФИКАЦИИ ПРОИ	13ВОДСТВА
ДОКУМЕНТ НА ПОВЕРКУ КБСП.427611.046 РЭ, раздел	4
ИНТЕРВАЛ МЕЖДУ ПОВЕРКА	МИ 1 год
Срок действия утвержденного агентства по техническому рег	о типа средств измерений продлен приказом Федерального улированию и метрологии от 13 мая 2022 г. N 1174.
Заместитель Руководителя	Подличник электронного документа, подписанного Я. В. В. Лазаренко ведеральное алектеронного документооберита ведеральное алектеронного документооберита метрологии. СВЕДЕНИЯ О СЕРТИФИКАТЕЗИ Сертификат: 029010980008АЕ27А64С9950DB06020289 Кому видан: Лазаревко Евгений Русланович действителен: с 27.12.2021 до 27.12.2022

СОДЕРЖАНИЕ

Введение	5
1 Описание и работа дефектоскопа	5
1.1 Назначение и область применения	5
1.2 Технические и метрологические характеристики	5
1.3 Состав дефектоскопа	6
1.4 Устройство и принцип работы	7
1.5 Маркировка и пломбирование	11
1.6 Упаковка	11
2 Использование по назначению	11
2.1 Эксплуатационные ограничения	11
2.2 Подготовка дефектоскопа к работе	11
2.3 Использование дефектоскопа	12
3 Техническое обслуживание	22
3.1 Меры безопасности	22
3.2 Порядок технического обслуживания дефектоскопа	23
4 Методика поверки	23
4.1 Операции поверки	23
4.2 Средства поверки	24
4.3 Требования безопасности	24
4.4 Условия поверки	25
4.5 Проведение поверки	25
4.6 Оформление результатов поверки	36
5 Хранение	37
6 Транспортирование	37
Приложение А	38
Приложение Б	39
Приложение В	40
Приложение Г	41
Паспорт	44

Руководство по эксплуатации (РЭ) включает в себя общие сведения необходимые для изучения и правильной эксплуатации дефектоскопа сварных соединений АРМС-МГ4 (далее дефектоскоп). РЭ содержит описание принципа действия, технические характеристики, методы контроля и другие сведения, необходимые для нормальной эксплуатации дефектоскопа.

К выполнению работ по контролю качества ультразвуковой дефектоскопией допускаются операторы – дефектоскописты І-го и ІІ – го уровней, прошедшие теоретическое и практическое обучение по специальной программе и имеющие соответствующее удостоверение.

Эксплуатация дефектоскопа должна проводиться лицами, ознакомленными с принципами работы, конструкцией дефектоскопа, настоящим РЭ.

1 Описание и работа дефектоскопа

1.1 Назначение и область применения

1.1.1 Дефектоскоп предназначен для измерений амплитуды ультразвукового сигнала при контроле качества сварных стыковых соединений арматуры в соответствии с ГОСТ 23858 и СТО 02495307-002-2008. Дефектоскоп может быть использован так же для контроля качества сварных стыковых соединений труб большого диаметра и листового проката зеркально теневым методом при непосредственной установке ультразвуковых преобразователей без протектора по ГОСТ 14782.

Дефектоскоп является ультразвуковым переносным измерительным прибором неразрушающего контроля специального назначения. Использует теневой и зеркально-теневой метод контроля при работе с ультразвуковыми пьезоэлектрическими преобразователями (в дальнейшем ПЭП), с номинальной частотой 2,5 МГц.

Для обеспечения акустического контакта между поверхностью преобразователя и поверхностью изделия используется специальная контактная смазка.

1.1.2 Область применения – контроль качества сварных стыковых соединений арматуры в строительстве, машиностроении, энергетике, металлургической промышленности, на транспорте и в других отраслях.

1.1.3 Условия эксплуатации:

- температура воздуха от минус 10 °C до плюс 40 °C;
- относительная влажность воздуха до 95 %;
- атмосферное давление от 84 до 106,7 кПа.

1.2 Технические и метрологические характеристики

Наименование характеристики	Значение характеристики
1	2
Динамический диапазон приемного тракта дефектоскопа, дБ	от 0 до 50
Границы линейности динамического диапазона Amin, дБ	15
Amax, дБ	45
Пределы допускаемой абсолютной погрешности измерения отно-	
шения амплитуд сигналов на входе приемника, дБ	±1
Диапазон установки коэффициента усиления, дБ	от 5 до 75

Дефектоскоп сварных соединений АРМС-МГ4

1	2
Шаг диапазона установки коэффициента усиления, дБ	1; 5; 10
Пределы допускаемой абсолютной погрешности установки коэффи- циента усиления, дБ	± 1
Частота зондирующего импульса, МГц	$2,5 \pm 0,13$
Амплитуда зондирующего импульса при нагрузке 50 Ом, В, не менее	40
Цена единицы наименьшего разряда, дБ	0,1
Максимальная чувствительность приемника дефектоскопа, мкВ, не более	110
Номинальная частота максимума преобразования ПЭП, МГц	2,5
Отклонение частоты максимума преобразования от номинального значения, МГц, не более	± 0,2
Номинальное значение угла ввода ПЭП, градус	65
Отклонение угла ввода от номинального значения, градус	± 2
Габаритные размеры, не более:	
- электронного блока, мм	175x78x25
- механического устройства с датчиками, мм	300x100x80
Электропитание от встроенного аккумулятора, напряжение, В	3,7
Потребляемая мощность в режиме измерения, Вт, не более	0,5
Масса дефектоскопа, кг, не более	2,0
Средняя наработка на отказ, ч, не менее	20000
Средний срок службы, лет	10

Таблица 1.1 – Идентификационные данные программного обеспечения

Наименова- ние про- граммного обеспечения	Идентифика- ционное на- именование программного обеспечения	Номер версии (идентифика- ционный но- мер) программ- ного обеспече- ния	Цифровой идентификатор программного обеспече- ния (контрольная сумма исполняемого кода)	Алгоритм вы- числения циф- рового иденти- фикатора про- граммного обес- печения
Встроенное программное обеспечение	ARMS-M	V1.01	5FF8	CRC16
ПО ПК	АРМС-МГ4	V1.0.0.1	Daa202c53c3db40204eb26f eb0659e5a	MD5

1.3 Состав дефектоскопа

1.3.1 Конструктивно дефектоскоп состоит из электронного блока (1), ПЭП (2), механического устройства для крепления ПЭП «Клещи» (6). Общий вид дефектоскопа показан на рисунке 1.1.

В состав дефектоскопа также входит:

- зарядное устройство;
- коаксиальные кабели;
- протекторы R=12мм 2 шт; R=18мм 2шт; R=22мм 2шт;
- приспособление для контроля сварных швов листового проката;
- контрольный образец;
- кабель интерфейса USB;
- USB-флеш-накопитель с программным обеспечением;

Дефектоскоп сварных соединений АРМС-МГ4

- механическое приспособление «Струбцина»;
- приспособление «Скоба» (контроль сварных соединений на остающейся скобе-накладке);*
- арматура с искусственным дефектом^{*}.
- * поставляется по спецзаказу.

1.3.2 Дефектоскоп поставляется заказчику в потребительской таре.

1.4 Устройство и принцип работы

1.4.1 В основу работы дефектоскопа заложено измерение амплитуды импульса ультразвуковых колебаний (далее УЗК) при прохождении через изделие. Принцип работы основан на измерении ослабления УЗК при наличии дефектов типа пор, трещин, раковин, непроваров, шлаковых включений в сварных соединениях.

1.4.2 Характеристикой качества сварного соединения служит разница величин амплитуд сигналов, измеренных на цельном стержне арматуры и на контролируемом сварном соединении.

$$\Delta A = A_0 - A_c, \quad \text{гдe} \tag{1.1}$$

 A_0 – амплитуда сигнала на цельной арматуре, дБ;

 A_c – амплитуда сигнала на сварном соединении, дБ.

1 – электронный блок

- 2 пьезоэлектрический преобразователь (ПЭП)
- 3 механическое устройство для крепления ПЭП

«Струбцина»

4 – место пломбирования от несанкционированного доступа;

5 – метка разъема излучающего ПЭП

6 - механическое устройство «Клещи»

Рисунок 1.1 – Общий вид дефектоскопа

Значение амплитуды A_0 устанавливается оператором в пределах линейности динамического диапазона, изменением коэффициента усиления Ku.

1.4.3 Амплитуда сигнала на сварном соединении рассчитывается по формуле:

$$A_{c} = A_{0} + (Ku_{0} - Ku_{c}),$$
 где (1.2)

*Ки*₀ – коэффициент усиления при измерении амплитуды сигнала на цельной арматуре;

*Ки*_{*С*} – коэффициент усиления при измерении амплитуды сигнала на сварном соединении.

Оценку качества сварных соединений следует проводить по трехбалльной системе:

- 1 балл - негодные (подлежат вырезке);

- 2 балла - ограниченно годные (подлежат исправлению);

- 3 балла – годные.

При контроле сварных стыковых соединений арматуры разного диаметра оценка качества соединений проводится по стержню меньшего диаметра. Оценка качества сварного соединения в зависимости от величины ΔA приведена в таблице 2 (приложение 1).

1.4.3 На лицевой панели электронного блока дефектоскопа размещен ЖК дисплей и клавиатура, состоящая из восьми кнопок: ПУСК, ВКЛ (окрашена в красный цвет), РЕЖИМ, ВВОД, $\leftarrow, \rightarrow, \uparrow u \downarrow$.

1.4.4 На верхней панели электронного блока расположены разъемы для подключения ПЭП. В нижней части панели расположен разъем USB для связи с ПК.

1.4.5 Включение дефектоскопа и его отключение производится кратковременным нажатием кнопки ВКЛ.

1.4.6 Для ввода ультразвуковых колебаний (далее УЗК) в арматуру и приема прошедшего через арматуру сигнала используются ПЭП со сменными протекторами. Сменные протекторы имеют цилиндрическую поверхность с радиусом равным половине максимального диаметра арматуры. ПЭП со сменными протекторами устанавливаются в держатели (рис.1.2), которые расположены на механическом устройстве.

1-держатель; 2 – ПЭП; 3 – сменный протектор; 4 – упругий прижим; 5 – разъем подключения ПЭП; 6 – риска (точка ввода УЗК)

Рисунок 1.2 – Расположение ПЭП и сменного протектора в держателе

Механическое устройство позволяет располагать ПЭП на арматурном стержне в зависимости от метода контроля (теневой или зеркально-теневой метод) (рис. 1.3, 1.4). Механическое устройство типа «Клещи» изготавливается в соответствии с ГОСТ 23858. Механическое устройство типа «Струбцина» предназначено для использования в тех случаях когда требуется очень надежное крепление преобразователей на арматуре. Направляющая механического устройства и устройства типа «Скоба» обеспечивает возможность настройки акустической системы для контроля сварных стыков арматуры диаметром от 18 до 40 мм. В случае необходимости контроля сварных стыков арматуры диаметром более 40 мм применяется механическое устройство с расширенным диапазоном, изготавливаемое по специальному заказу.

1 – метки точки ввода УЗК; 2 - риски точки ввода УЗК; L – расстояние между ПЭП

Рисунок 1.4 – Расположение ПЭП на арматурном стержне при зеркально теневом методе контроля.

Дефектоскоп оснащен функцией самоотключения через 10 минут после окончания работы. Для предварительной установки расстояния L между ПЭП на механическом приспособлении «Струбцина» имеются две шкалы, на которых нанесены значения диаметра арматуры при теневом и зеркально-теневом методе контроля (рис. 1.5).

1 – шкала установки расстояния между ПЭП при теневом методе контроля;
 2 - шкала установки расстояния между ПЭП при зеркально-теневом методе контроля; 3 – зажим

Рисунок 1.5 - Расположение шкалы предварительной установки расстояния между ПЭП (L) в зависимости от метода контроля на механическом устройств типа «Струбцина»

1.4.7 Режимы работы дефектоскопа

Дефектоскоп обеспечивает пять различных режимов:

1.4.7.1 Режим «Измерение Ас» (устанавливается при включении питания).

Данный режим предназначен для измерения амплитуды сигнала при прохождении его через сварное соединение.

Измерение происходит после установки преобразователей на изделие и нажатия кнопки **ПУСК**. Запись результата измерений в архив производится при нажатии кнопки **ВВОД**.

Выход из режима «Измерение A_c» в основное меню, экран (1), происходит при нажатии кнопки РЕЖИМ. Дисплей дефектоскопа примет вид:

(1)

1.4.7.2 Режим «Измерение А_о».

Данный режим предназначен для измерения амплитуды сигнала при прохождении его через цельный участок арматуры. Запись результатов измерений в поле A₀ производится при нажатии кнопки **ВВО**Д.

Для перевода дефектоскопа в режим «Измерение A_0 » необходимо из основного меню, экран (1), кнопками \downarrow (\uparrow) переместить курсор на пункт «Измерение A_0 » и нажать кнопку **ВВОД**.

Выход из режима «Измерение A₀» в основное меню, экран (1), происходит при нажатии кнопки РЕЖИМ.

1.4.7.4 Режим «Настройки».

В данном режиме производятся: ввод диаметра арматуры; установка коэффициента усиления; шаг установки коэффициента усиления; выбор индикации A_c/ΔA/A-Скан; вывод графика сигнала или числовых данных; автоматический контроль установки базы преобразователей; настройка календаря и часов; настройки режима подсветки дисплея.

Для перевода дефектоскопа в режим «Настройки» необходимо из основного меню, экран (1) кнопками \downarrow (\uparrow) переместить курсор на пункт «Настройки» и нажать кнопку **ВВОД**.

Выход из режима «Настройки» в основное меню происходит при нажатии кнопки РЕЖИМ.

1.4.7.5 Режим «Архив». В режиме «Архив» осуществляется просмотр результатов измерений, занесенных в Архив ранее.

Для перевода дефектоскопа в режим «Архив» необходимо из основного меню кнопками \downarrow (\uparrow) переместить курсор на пункт «Архив» и нажать кнопку **ВВОД**.

Выход из режима «Архив» в основное меню происходит при нажатии кнопки РЕЖИМ.

Объем архивируемой информации – 500 результатов измерений.

1.4.7.6 Режим «Связь с ПК». Режим «Связь с ПК» применяется для передачи данных, полученных в результате измерений, в персональный компьютер через USB порт.

Для перевода дефектоскопа в режим «Связь с ПК» необходимо из основного меню кнопками \downarrow (↑) переместить курсор на пункт «Связь с ПК» и нажать кнопку ВВОД.

Выход из режима «Связь с ПК» в основное меню происходит при нажатии кнопки РЕЖИМ.

1.5 Маркировка и пломбирование

1.5.1 Маркировка

На передней панели электронного блока нанесены:

- товарный знак предприятия-изготовителя;
- условное обозначение дефектоскопа.

На задней панели электронного блока, на табличке нанесены:

- товарный знак предприятия изготовителя;
- условное обозначение дефектоскопа;
- заводской номер, месяц и год изготовления.

Управляющие элементы маркированы в соответствии с их назначением.

1.5.2 Пломбирование

Дефектоскопы пломбируются при положительных результатах поверки посредством нанесения клейма на пластичный материал. Место пломбирования – углубления для винта расположенные на задней панели электронного блока. Сохранность пломб в процессе эксплуатации является обязательным условием принятия рекламаций в случае отказа дефектоскопа.

1.6 Упаковка

1.6.1 Для обеспечения сохранности дефектоскопа и комплекта принадлежностей при транспортировании применяется укладочный кейс со средствами амортизации из поролона и воздушнопузырчатой пленки, категория упаковки КУ-1 по ГОСТ 23170. Эксплуатационная документация упакована в пакет, изготовленный из полиэтиленовой пленки. Маркировка упаковки производиться в соответствии с ГОСТ 14192.

2 Использование по назначению

2.1 Эксплуатационные ограничения

2.1.1 Измерения проводятся только с применением специальной акустической смазки в соответствии с ГОСТ 23858 (приложение В) или СТО 02495307 (приложение Б).

2.1.2 Кривизна применяемого при измерении протектора должна соответствовать диаметру арматуры. Допускается применение протектора с кривизной на два номера больше требуемого.

2.1.3 Контроль сварных соединений арматуры, выполненных в инвентарных формах, проводят теневым методом, а контроль сварных соединений арматуры выполненных на остающейся скобе накладке зеркально-теневым методом.

2.2 Подготовка дефектоскопа к работе

2.2.1 Перед началом работы следует внимательно изучить руководство по эксплуатации.

2.2.2 При резкой смене условий эксплуатации (переноска прибора в более теплое или более холодное помещение) перед измерениями необходимо выдержать прибор в течение 15 минут на каждые десять градусов изменения температуры окружающей среды.

2.2.3 Зарядить аккумуляторную батарею. Для чего подключить кабель к USB разъему прибора и к USB разъему ПК. Зарядка аккумулятора производится так же и от внешнего зарядного устройства (ЗУ), поставляемого с прибором. Для зарядки аккумулятора от внешнего ЗУ, подключить кабель USB к разъему ЗУ, затем подключить ЗУ к сети переменного тока 220 В.

Время полной зарядки аккумулятора составляет 4-5 часов. Допускается многократная подзарядка. При полном разряде аккумулятора прибор автоматически отключается.

В приборе встроена защита от перезаряда, превышении тока и температуры.

2.2.4 Установить сменный протектор (1) в зависимости от диаметра арматуры (рис.2.1). Радиус сменного протектора в зависимости от диаметра арматуры приведен в таблице 2.1. Числовое значение радиуса кривизны протектора нанесено на его боковой поверхности.

1 - сменный протектор; 2 - ПЭП; 3 – планка держателя

Рисунок 2.1 – Установка сменного протектора и ПЭП

Гаолица 2.1	в миллиметрах				
Диаметр	Радиус	Диаметр	Радиус	Диаметр	Радиус
арматуры	протектора	арматуры	протектора	арматуры	протектора
18		25		36	
20	12	28	18	40	22
22		32		40	

2.2.5 Перед установкой протектора покрыть поверхности ПЭП (2) и плоскости протектора примыкающей к ПЭП минеральным маслом, убедиться, что на поверхности отсутствуют твердые механические включения. Поднять планку держателя ПЭП (3). Установить ПЭП на протектор, притереть плоскости, совершая небольшие вращательные движения. Отпустить планку держателя, убедившись, что выступы держателя охватывают ПЭП со всех сторон. При сборке разъемы ПЭП должны быть расположены в противоположные стороны. Проверить, что протектор перемещается в вертикальном направлении без заеданий и с помощью упругого прижима возвращается в исходное положение.

Примечание – Если сварка арматуры выполнена на стальной скобе–накладке, то можно воспользоваться приспособлением «скоба», поставляемой по специальному заказу.

2.3 Использование дефектоскопа

2.3.1 Порядок работы в режиме «Измерение А₀»

2.3.1.1 Установить преобразователи на приспособлении в зависимости от метода контроля (теневой или зеркально теневой метод) (рис. 2.2). Установить сменные протекторы на ПЭП в зависимости от диаметра арматуры, предварительно смазав поверхность, контактирующую с ПЭП, минеральным маслом.

2.3.1.2 Зачистить поверхность изделия от коррозии. Обильно нанести на поверхность арматуры в местах установки ПЭП и на рабочие поверхности ПЭП слой акустической смазки. Установить расстояние L между ПЭП в зависимости от диаметра арматуры (таблица 1, приложение A).

Примечание – Из-за отклонений геометрических размеров арматуры, при ее изготовлении, от номинальных значений (в пределах допусков) установочное расстояние может меняться в пределах ± 5 мм.

1 – ПЭП излучатель; 2 – стержень арматуры; 3 – ПЭП приемник.

а) зеркально-теневой метод б) теневой метод

Рисунок 2.2 – Схема расположения ПЭП при измерении опорного сигнала на цельной арматуре.

Установить приспособление с ПЭП на стержень арматуры таким образом, чтобы точки ввода ПЭП располагались на середине впадины профиля.

2.3.1.3 Подключить к разъемам электронного блока приемный и излучающий ПЭП. Включить питание однократным нажатием кнопки **ВКЛ**, при этом на дисплее кратковременно высвечивается тип дефектоскопа, затем дефектоскоп устанавливается в режим «Измерение A_c».

Перевести дефектоскоп в режим «**Настройки**», ввести диаметр арматуры и шаг коэффициента усиления (см. п. 2.3.3). Дефектоскоп можно перевести в режим настройки, минуя основное меню, при длительном удержании (более двух секунд) кнопки **РЕЖИМ**.

Перевести дефектоскоп в режим работы «Измерение A_0 » в соответствии с п. 1.4.6.2 . Дисплей прибор примет вид, например:

(2)

Нажать кнопку **ПУСК.** После окончания измерений на дисплей выводится значение амплитуды сигнала на цельной арматуре:

Дисплей дефектоскопа условно разбит на три части.

В верхней части выводятся:

- пиктограмма режима измерения;
- коэффициент усиления Ку;
- шаг коэффициента усиления ΔKy .

В средней части дисплея выводятся:

- индикатор отношения сигнал/шум;
- амплитуда сигнала А (дБ);
- индикатор амплитуды сигнала.

В нижней части дисплея выводятся:

- номер измерения;
- амплитуда сигнала на цельной арматуре;
- диаметр арматуры;
- индикатор уровня заряда аккумулятора.

Изменяя коэффициент усиления кнопками (←) или (→) и наблюдая за индикаторами необходимо получить максимальное значение отношения сигнал/шум при максимальном уровне сигнала. Амплитуда сигнала должна быть в переделах от 35 дБ до 45 дБ.

Если амплитуда сигнала будет меньше 10 дБ или больше 50 дБ, то на экране дефектоскопа появятся прочерки. Индикатор уровня сигнала в первом случае будет показывать нулевое, а во втором случае максимальное значение.

Для получения осциллограммы огибающей сигнала (А-скан) необходимо нажать кнопку **ВВОД**. Более подробное описание подбора коэффициента усиления описано в п. 2.3.3.7.

Результат измерения отображается в нижней части экрана A₀. Для редактирования значения A₀ нажать кнопку **ВВОД** и удерживать ее в течение не менее двух секунд. Дисплей дефектоскопа примет вид, например:

(4)

Редактирование числового значения A_0 производится кнопками $\leftarrow, \rightarrow, \uparrow$ и \downarrow . После окончания редактирования нажать **ВВОД**. Числовое значение A_0 копируется в нижнюю часть экрана. При сохранении результата измерения сохраняется и значение коэффициента усиления.

2.3.2 Порядок работы в режиме «Измерение Ас»

2.3.2.1 Установить преобразователи на приспособлении в зависимости от метода контроля (теневой или зеркально теневой метод) (рис. 2.3). Контроль зеркально-теневым методом применяют для сварных соединений, выполненных на остающейся скобе-накладке (рис.2.3 а). Контроль теневым методом применяют для стыковых сварных соединений, выполненных в инвентарной форме (рис.2.3 б).

Установить сменные протекторы на ПЭП в зависимости от диаметра арматуры, предварительно смазав поверхность, контактирующую с ПЭП, минеральным маслом.

1 – ПЭП излучатель; 2 – сварочный шов; 3 – ПЭП приемник
а) зеркально-теневым методом
б) теневым методом

Рисунок 2.3 – Схема ультразвукового контроля сварного стыкового соединения арматурного стержня.

2.3.2.2 Зачистить поверхность изделия от коррозии. Обильно нанести на поверхность арматуры в местах установки ПЭП и на рабочие поверхности ПЭП слой акустической смазки. Установить расстояние между ПЭП L в зависимости от диаметра арматуры (таблица 1, приложение A).

Установить приспособление с ПЭП на стержень арматуры таким образом, чтобы точки ввода ПЭП располагались на середине впадины профиля.

2.3.2.3 Подключить к разъему электронного блока ПЭП. Включить питание однократным нажатием кнопки **ВКЛ**, при этом на дисплее кратковременно высвечивается тип дефектоскопа, затем дефектоскоп устанавливается в режим «**Измерение A**_c». Дисплей примет вид, например:

(5)

2.3.2.2 Проведение измерений

Установить (если требуется) диаметр арматуры в режиме «Настройки». Дефектоскоп можно перевести в режим настройки, минуя основное меню, при длительном удержании (более двух секунд) кнопки **РЕЖИМ**. Нажать кнопку **ПУСК.** После окончания измерений на дисплей выводится значение амплитуды сигнала на сварном соединении, например:

(6)

Если в настройках прибора установлен вывод результата измерения «ΔА», то на дисплее прибора будет отображаться разница величин амплитуд сигналов, измеренных на цельном стержне арматуры и на контролируемом сварном соединении, например:

(7)

Измерения проводить с тем же коэффициентом усиления, что и при измерении на цельной арматуре. В случае необходимости, если амплитуда сигнала менее 10 дБ, можно увеличить коэффициент усиления кнопками — или —.

Для получения осциллограммы огибающей сигнала (А-скан) необходимо нажать кнопку ВВОД. Более подробное описание подбора коэффициента усиления описано в п. 2.3.3.7.

2.3.2.3 Провести три измерения, переустанавливая преобразователи по схеме, приведенной на рисунке 4. Перемещение ПЭП должно проводиться в одной плоскости. В крайних положениях (позиция 1-1 и 3-3 рис.2.4) один из ПЭП следует размещать вплотную к сварочному шву. В среднем положении ПЭП следует располагать симметрично сварочному шву. Для проведения следующего измерения нажать кнопку ↑. Для возврата к предыдущему измерению (в случае если измерение проведено не корректно) нажать кнопку ↓.

а) зеркально-теневой метод б) теневой метод

Рисунок 2.4 – Проведение контроля сварных соединений, порядок расположения ПЭП при измерении.

После проведения трех измерений нажать кнопку ↑. На дисплее отобразятся результаты всех трех измерений. Дисплей дефектоскопа примет вид, например:

(8)

(9)

2.3.2.4 Результаты измерений могут быть занесены в архив, для чего необходимо нажать кнопку **ВВОД**.

2.3.2.5 Выключение дефектоскопа производится автоматически в случае, если в течение 10 минут не проводятся измерения или не нажимаются кнопки клавиатуры.

При снижении напряжения питания ниже 3,1 В на дисплее появляется сообщение:

Дальнейшая работа дефектоскопа возможна только после зарядки аккумулятора.

2.3.3 Порядок работы в режиме «Настройка».

Перевести прибор в режим «Настройки» в соответствии с п. 1.4.6.4. Дисплей прибора примет вид, например:

НАСТРОИКИ	
▶d = 30	
Ku = 30	(10)
ΔΚυ = 5	
База Откл Вкл	

Меню режима настроек имеет два экрана. При перемещении курсора вниз появится следующая страница меню настроек:

HAC	троик	.и
▶ База	Откл	Өкл
Вывод	A ₀ ΔA	>>
Часы		
Подсв.	Откл.	>>

- 2.3.3.1 Режим «Настройки» содержит следующие функции:
- ввод диаметра арматуры (**d**);
- ввод коэффициент усиления (**Ки**);
- ввод шага коэффициента усиления (ΔКи);
- включение проверки установленной базы (База Откл /Вкл);
- форма вывода результатов измерений (Вывод А₀/ ΔА/А-Скан);
- установка даты и часов реального времени (Часы);
- включение подсветки дисплея (Подсв. Откл/Эконом/Вкл).
- 2.3.3.2 Переход к каждому элементу настроек происходит при нажатии кнопок ↑ и ↓. Ввод

числовых значений и параметров настроек производится при помощи кнопок ←, →. Выход из режима настроек происходит при нажатии кнопки **РЕЖИМ**.

2.3.3.3 Ввод диаметра арматуры d.

Установить курсор на данный пункт настроек и нажать ВВОД. Ввести числовое значение диаметра арматуры из списка кнопками ←, →.

2.3.3.4 Ввод коэффициента усиления Ки.

Для ввода коэффициента усиления установить курсор на пункт настроек **Ку** и нажать ВВОД. Ввести числовое значение коэффициента усиления кнопками ←, →.

2.3.3.5 Ввод шага коэффициента усиления АКи.

Коэффициент усиления в режиме измерения можно изменять дискретно. Минимальное значение, на которое изменяется коэффициент усиления, задается шагом коэффициента усиления. Для ввода числового значения шага коэффициента усиления установить курсор на пункт **ΔКи**. Ввести числовое значение шага коэффициента усиления кнопками ←, →.

2.3.3.6 Включение проверки установленной базы (База Вкл/Откл).

Данный параметр настройки предназначен для автоматического контроля правильности установки расстояния между приемным и излучающим ПЭП. Контроль проводится по времени задержки принимаемого сигнала и введенному диаметру арматуры. В отдельных случаях, когда, например, проводится дефектоскопия сварочных швов плоских деталей автоматическая проверка базы отключается.

2.3.3.7 Форма вывода результатов измерений (Вывод Ас/ ДА/А-Скан).

В дефектоскопе принятый сигнал можно вывести в виде числового значения максимальной амплитуды (A₀), в виде разницы амплитуд (ΔА) или в виде осциллограммы огибающей (А-скан). Вывод сигнала в виде А-скан требуется для правильного подбора коэффициента усиления.

а) – коэффициент усиления подобран правильно;

б) – коэффициент усиления большой (сигнал в насыщении);

в) – коэффициент усиления недостаточный.

Рисунок 2.5 – Осциллограммы А-скан на экране дефектоскопа при различном коэффициенте усиления.

При очень большом коэффициенте усиления сигнал может войти в насыщение, а при недостаточном коэффициенте усиления уровень сигнала может быть соизмерим с уровнем шума (рис. 2.5).

Для выбора формы вывода результатов измерений необходимо установить курсор на пункт $A_c/\Delta A/A-C\kappa ah$, кнопками \leftarrow , \rightarrow выбрать вариант вывода.

2.3.3.8 **Часы**. В данном режиме настроек устанавливается дата и текущее время. Установить курсор на пункт настроек «**Часы**» и нажать **ВВОД**. Дисплей примет вид, например:

Дефектоскоп сварных соединений АРМС-МГ4

Настрой	іки	
Установка и време	даты	
26.10.2011	12:35	

(12)

При необходимости изменения даты нажать **ВВОД.** Далее при помощи кнопок $\leftarrow, \rightarrow, \downarrow (\uparrow)$ установить число, месяц, год, часы, минуты и секунды для перехода между изменяемыми параметрами использовать кнопку **ВВОД**.

Установленные дата и время сохраняются в программном устройстве дефектоскопа не менее трех лет, после чего батарея CR-2032 должна быть заменена в условиях предприятия изготовителя.

2.3.3.9 Подсветка дисплея. (Подсв. Откл./Эконом/Вкл.)

В данном режиме производится выбор режима подсветки:

- Откл. - подсветка дисплея отключена;

- Эконом - подсветка дисплея включается на 5 с только после проведения измерений;

- Вкл. – подсветка дисплея включена постоянно. Данный режим приводит к повышенному потреблению электроэнергии и как следствие к быстрой разрядке аккумулятора.

Для выбора режима подсветки необходимо установить курсор на пункт **Подсв.** $A_c/\Delta A/A$ -Скан, кнопками \leftarrow , \rightarrow выбрать вариант включения подсветки дисплея.

2.3.4 Порядок работы в режиме «Архив»

2.3.4.1 Перевести дефектоскоп в режим «Архив» в соответствии с п. 1.4.5.5.

На дисплее высвечивается последнее, занесенное в Архив измерение, например:

(13)

Для просмотра содержимого Архива необходимо нажать кнопки \downarrow (↑).

Для просмотра опорного значения амплитуды сигнала на цельной арматуре нажать кнопку (→):

(14)

Для выхода из данного режима просмотра нажать кнопку (-).

2.3.4.2 Для удаления данных из архива нажать кнопку **ВВОД** и держать более 1 секунды, на дисплей выводится сообщение:

Кнопками \leftarrow , \rightarrow и **ВВОД** подтвердить или отменить удаление данных из архива. 2.3.4.4 Для возврата к экрану «**Режим работы**» нажать кнопку **РЕЖИМ**.

2.3.5 Порядок работы в режиме «Связь с ПК»

Перевести дефектоскоп в режим передачи данных из архива в ПК, для чего, нажатием кнопки **РЕЖИМ** перевести дефектоскоп в основное меню «**Режим**», кнопками \downarrow (\uparrow) переместить курсор на пункт «**Связь с ПК**» и, нажатием кнопки **ВВОД** активировать режим.

2.3.5.1. Системные требования к ПК

Для работы программы необходима система, удовлетворяющая следующим требованиям:

– операционная система Windows 95, 98, 98SE, 2000, ME, XP, 7, 8, 10 © Microsoft Corp;

– один свободный USB-порт.

2.3.5.2. Подключение дефектоскопа к ПК

Для передачи данных используется стандартный USB-порт. Для подключения необходим свободный USB-порт. Подсоединить кабель, поставляемый в комплекте с дефектоскопом, к компьютеру, второй конец подсоединить к включенному дефектоскопу.

2.3.5.3. Назначение, установка и возможности программы

2.3.5.3.1. Назначение программы

Программа для передачи данных предназначена для работы совместно с дефектоскопами АРМС-МГ4 ООО «СКБ Стройприбор». Программа позволяет передавать данные, записанные в архив дефектоскопа, на компьютер.

2.3.5.3.2. Установка программы

Для установки программы необходимо выполнить следующие действия:

- подсоединить USB-флеш-накопитель с программным обеспечением к ПК;

- открыть папку «Programs» на накопителе;

- найти и открыть папку с названием дефектоскопа;

– начать установку, запустив файл Install.exe.

После загрузки нажать кнопку «Извлечь». По завершению установки программа будет доступна в меню «Пуск» – «Программы» – «Стройприбор» – «АРМС-МГ4».

2.3.5.3.3. Возможности программы:

– просмотр данных и занесение служебной информации в поле «Примечание» для каждого измерения;

- распечатка отчетов;

– дополнение таблиц из памяти дефектоскопа (критерий – дата последней записи в таблице);

– экспорт отчетов в Excel;

2.3.5.3.4. Настройка USB-соединения

Для настройки USB-соединения необходимо подключить дефектоскоп к компьютеру через USB-порт. Установить драйвер USB, который поставляется вместе с программой связи.

Автоматическая установка драйвера:

После того как OC Windows обнаружила новое устройство, в мастере установки драйверов (см. рис 2.6), необходимо указать папку с USB драйвером (X:/Programs/ USB driver/) и нажать кнопку «Далее» (см. рис 2.7).

Ручная установка USB драйвера:

- подсоединить USB-флеш-накопитель с программным обеспечением к ПК;

- открыть папку «Programs» на накопителе;

- найти и открыть папку «USB driver»;

– нажать правой клавишей мыши на файле FTDIBUS.INF в выпадающем меню выбрать пункт «Установить» (см. рис 2.8);

– нажать правой клавишей мыши на файле FTDIPORT.INF в выпадающем меню выбрать пункт «Установить»;

– перезагрузить OC Windows.

 Если с устройством поставляется установочный диск, вставьте его. Выберите действие, которое следует выполнить. Автоматическая установка (рекомендуется) Установка из указанного места 	
Выберите действие, которое следует выполнить. С Автоматическая установка (рекомендуется) Эстановка из указанного места	
Для продолжения нажмите кнопку "Далее".	

Рисунок 2.6 – Окно мастера обновления оборудования

задаите параметры поиска и	установки.
Выполнить поиск наиболее	подходящего драйвера в указанных местах.
Используйте флажки для су по умолчанию локальные па подходящий драйвер.	жения или расширения области поиска, включающе апки и съемные носители. Будет установлен наиболе
П Поиск на сменных но	сителях (дискетах, компакт-дисках)
🔽 Включить следующее	место поиска:
CD SKB\Programs\USE	B driver\w2k_2003_xp 💌 O6sop
С Не выполнять поиск. Я сам	1 выберч нчжный драйвер.
Этот переключатель примен Windows не может гарантир подходящим для имеющего	чэстся для выбора драйвера устройства из списка. зовать, что выбранный вами драйвер будет наиболее ся оборудования.

Рисунок 2.7 – Окно выбора драйвера для установки.

Дефектоскоп сварных соединений АРМС-МГ4

🗀 w2k_2003_xp							
Файл Правка Вид Избранное	Cer	вис Справка					
🔾 Назад 🔹 🔘 – 🍞 👂 Понск	D	lanka 🛄 -					
Адрес: 🛅 D:\CD SKB\Programs\USF	driver	\w2k_2003_xp					_
		Иня		Разиер	Тип =	Изиенен	
Задачи для файлов и папок Переикеновать файл Переикеновать файл Переистить файл Копировать файл Спубликсевать файл в ебе Спубликсевать файл в алектропной почта Электропной почта Печатать файл Хданить файл Другие места	\$	2176 Rel ftdiput.c. Ftdiput.c. Ftdiput.c. FtCSERC FtDILV2 FtDILV2 FtDILV2 FtDILV2 FtDIPOR ftser2.c. FtDIPOR ftser2.c. FtDIPOR ftser2.c. FtDIPOR ftser2.c. Application ftsetalatic ftsetalatic	ease Info.DOC at at CO.DLL II II II COTOPATE VICE COMPL Reat VICE COMPL Reat Extract Files Extract Files Extract Files	11 KG 10 KG 20 KG 77 KG 40 KG 1 KG 65 KG 3 KG	Документ Міскозб Каталог безопасн Коллонент прилох Компонент прилох Компонент прилох Компонент прилох Полложение Сведения для уст Совдения для уст Системный файл Системный файл Системный файл Системный файл	12.12.2005 8:29 25.12.2005 22:02 26.12.2005 22:02 19.12.2005 16:02 19.12.2005 16:02 19.12.2005 16:02 02.12.2005 16:02 12.12.2005 16:02 12.12.2005 16:02 19.12.2005 16:02 19.12.2005 16:02 02.12.2005 16:12 02.12.2005 16:12 02.12.2005 16:12	
 USB driver Мон докуленты Общие докуленты Мой контьютер Кай контьютер Сатевое окружение 			Test archive Add to archive Convert to Adobe PI Convert to Adobe PI Build VCD File ANIPP Classic	DF DF and EMail F			
Подробно	\$		Открыть с приощы	ю			
			Отправить	•			
			Вырезать Копировать				
			Создать ярлык Удалить Переименовать				
			Свойства				

Рисунок 2.8 – Окно ручной установки драйвера

2.3.5.4. Прием данных с дефектоскопа

2.3.5.4.1. Включить компьютер и запустить программу «Пуск» – «Программы» – «Стройприбор» – «АРМС-МГ4».

2.3.5.4.2. Подключить дефектоскоп к ПК согласно п. 2.3.5.2.

2.3.5.4.3 В меню "Сервис" выбрать пункт "Найти устройство".

2.3.5.4.4 В меню "Сервис" выбрать пункт "Принять данные".

На экране отобразится процесс передачи данных с дефектоскопа на компьютер. После передачи на экране данные будут отображены в табличном виде. Теперь можно:

– удалить ненужные данные;

– добавить примечание;

- экспортировать в Excel;

- распечатать отчет;

2.3.5.4.5 Подробное описание работы с программой находится в файле справки «Пуск» – «Программы» – «Стройприбор» – «Помощь – АРМС-МГ4».

2.3.5.4.6 Если во время передачи данных произошел сбой, на экране ПК появляется сообщение: «Дефектоскоп не обнаружен». Проверить правильность подключения дефектоскопа согласно инструкции и убедится, что дефектоскоп находится в режиме связи с ПК». В этом случае необходимо проверить подключение дефектоскопа, целостность кабеля и работоспособность USB-порта компьютера, к которому подключен дефектоскоп и повторить попытку приема данных.

2.3.5.5 Для возврата в основное меню нажать кнопку РЕЖИМ.

3 Техническое обслуживание

3.1 Меры безопасности

3.1.1 К работе с дефектоскопом допускаются лица, прошедшие инструктаж по технике

безопасности при работе с электронными дефектоскопами.

3.1.2 Запрещается проводить измерения если арматурный стержень используется для заземления корпусов действующих электроустановок.

3.1.3 Запрещается проводить измерения одновременно с проведением сварочных работ на арматурном каркасе.

3.1.4 При установке механического приспособления на арматурный стержень рекомендуется браться за винты струбцин. При переноске дефектоскопа необходимо использовать футляр.

3.2 Порядок технического обслуживания дефектоскопа

3.2.1 Техническое обслуживание дефектоскопа включает:

- профилактический осмотр;

– планово-профилактический и текущий ремонт, юстировку.

3.2.2 Периодичность профилактических осмотров устанавливается в зависимости от интенсивности эксплуатации дефектоскопа, но не реже одного раза в год.

При профилактическом осмотре проверяется четкость работы клавиатуры, состояние соединительных элементов, кабелей и лакокрасочного покрытия, а также проверка состояния аккумулятора.

3.2.3 Планово-профилактический ремонт проводится после истечения гарантийного срока не реже одного раза в год. Ремонт включает в себя внешний осмотр, замену органов управления и соединительных элементов (при необходимости).

3.2.4 При текущем ремонте устраняют неисправности, обнаруженные при эксплуатации дефектоскопа. После ремонта проводится поверка/калибровка дефектоскопа.

Планово-профилактический ремонт, текущий ремонт, юстировка и калибровка дефектоскопа проводятся предприятием-изготовителем.

3.2.5 Замена аккумулятора проводится только в условиях предприятия изготовителя или сервисных центрах. Самостоятельная замена аккумулятора ведет к потере гарантии на дефектоскоп.

4 Методика поверки

Настоящая методика поверки разработана в соответствии с РМГ 51-2002 «Документы на методики поверки. Основные положения» и устанавливает методы и средства первичной и периодической поверки дефектоскопов сварных соединений АРМС-МГ4.

До ввода в эксплуатацию, а так же после ремонта дефектоскопы подлежат первичной, а в процессе эксплуатации периодической поверке.

Межповерочный интервал - 1 год.

4.1 Операции поверки

4.1.1 При проведении поверки должны выполняться операции в последовательности, указанной в таблице 4.1.

4.1.2 Поверка проводятся метрологическими службами, аккредитованными в установленном порядке.

4.1.3 Поверка дефектоскопа прекращается в случае получения отрицательного результата при проведении хотя бы одной из операций, а дефектоскоп признают не прошедшим поверку.

Дефектоскоп сварных соединений АРМС-МГ4

Наименование операций	Номер	Обязательность проведения операции при поверке		
	пункта мпт	первичной	периодической	
Внешний осмотр	4.5.1	Дa	Дa	
Опробование	4.5.2	Дa	Дa	
Проверка идентификационных данных ПО	4.5.3	Дa	Дa	
Определение метрологиче	еских характери	истик		
Определение амплитуды и частоты зондирующе- го импульса	4.5.4.1	Да	Да	
Определение максимальной чувствительности приемника дефектоскопа	4.5.4.2	Да	Да	
Определение границ линейности динамического диапазона. Определение абсолютной погрешно- сти измерения отношения амплитуд сигналов на входе приемника	4.5.4.3	Да	Да	
Определение диапазона установки усиления. Оп- ределение абсолютной погрешности установки коэффициента усиления	4.5.4.4	Дa	Дa	
Определение отклонения частоты максимума преобразования ПЭП от номинального значения	4.5.4.5	Да	Да	
Определение отклонения угла ввода ПЭП от но- минального значения	4.5.4.6	Да	Да	

Таблица 4.1 – Операции поверки

4.2 Средства поверки

4.2.1 При проведении поверки применяют средства, указанные в таблице 4.2.

4.2.2 Средства поверки должны быть поверены в установленном порядке.

4.2.3 Приведенные средства поверки могут быть заменены на их аналог с характеристиками не хуже указанных.

4.3 Требования безопасности

4.3.1 При подготовке и проведении поверки должно быть обеспечено соблюдение требований безопасности работы и эксплуатации для оборудования и персонала, проводящего поверку, в соответствии с приведенными требованиями безопасности в нормативно-технической и эксплуатационной документации на средства поверки.

4.3.2 К работе по поверке дефектоскопа должны допускаться лица, прошедшие обучение и инструктаж по правилам безопасности труда.

4.3.3 Поверку производить только после ознакомления и изучения РЭ на средства поверки.

4.3.4 При проведении поверки должны соблюдаться требования ГОСТ 12.3.019-80.

4.3.5 Освещенность рабочего места поверителя должна соответствовать требованиям стандартных норм CH 245-71.

Дефектоскоп сварных соединений АРМС-МГ4

Таблица 4.2	– Средства поверки
Номер	
пункта	Наименование и тип основного или вспомогательного средства поверки, метрологи-
(раздела)	ческие и основные технические характеристики средства поверки
поверки	
поверки	Синтезатор сигналов СС306
	Параметры генерируемого сигнала: лиапазон частот 100Ги – 16 МГи: максимальная
	амплитула 1В: диапазон амплитул 0 – 60лБ: канал №1 снабжен делителем 20лБ: диа-
	пазон задержки импульсного сигнала 0,005 – 80000 мкс; диапазон длительности им-
4.5.4.1 -	пульсного сигнала 0,005 – 320 мкс;
4.5.4.4	Виды сигналов (режим работы): «Импульс» прямоугольный импульс;
	«А серия» серия импульсов с дискретным изменением амплитуды;
	Параметры встроенного цифрового осциллографа: частота дискретизации 200 МГц;
	диапазоны чувствительности ± 50B, ± 150B, ± 300B; диапазон развертки 0,2 – 20 мкс;
	синхронизация от сигнала, подаваемого на «Вход ЗИ»
	Контрольные образцы из комплекта КОУ-2.
	Образец контрольный №2. Высота образца 59 _{-0,3} мм, расстояние L любой шкалы от
	базовой (0°) не отличается от расчетного значения L_p более, чем на ±0,1 мм, где:
	$L_p = 44 \cdot tg\alpha$ - для шкалы от 0° до 70°; $L_p = 15 \cdot tg\alpha$ - для шкалы от 60° до 80°.
	Образец контрольный №3. Диаметр 110 _{-0,23} мм; высота 55 _{-0,2} мм; смещение нулевой
	риски ±0,1 мм.
4.5.4.5 -	Скорость продольной ультразвуковой волны в образцах составляет (5900±118) м/с.
4.3.4.0	пестер ультразвуковой у 31-РДМ. Диапазон регулировки ослаоления аттенюатора. –
	0 – 90 дв. дискретность регулировки ослаоления аттенюатора. – не облее 0,1 дв. Максимали ная амилитица в иходного сигнала генератора: – не менее 2.5 В. Предели
	максимальная амплитуда выходного сигнала генератора. – не менее 2,5 Б. пределы
	ралиоимпульсов: - не более +0.5%
	Предельни лопускаемой абсолютной погрешности установки залержки радиоимпуль-
	сов (Dx) относительно синхроимпульсов: - не более ±(0,01+0,001Dx) мкс

4.4 Условия поверки

4.4.1 Операции поверки дефектоскопа должны проводиться в нормальных климатических условиях по ГОСТ 23667.

4.4.2 Внешние электрические и магнитные поля должны находиться в пределах, не влияющих на работу дефектоскопа и средств поверки.

4.4.3 Время выдержки распакованных дефектоскопов в лабораторном помещении в условиях по п. 4.4.1 должно быть не менее четырех часов.

4.5 Проведение поверки

4.5.1 Внешний осмотр

При внешнем осмотре должно быть установлено соответствие дефектоскопа следующим требованиям:

- комплектность дефектоскопа должна соответствовать требованиям, установленным в ТУ

4276-046-12585810-2012;

– отсутствие механических повреждений, которые могут повлиять на работоспособность дефектоскопа;

- обеспечение сохранности лакокрасочных покрытий;
- четкость нанесения надписей и обозначений;
- надежность крепления органов управления и коммутации;
- наличие и сохранность маркировки;

– наличие клейма в месте, делающем, невозможным вскрытие дефектоскопа без нарушения клейма.

Дефектоскоп считается прошедшим поверку с положительным результатом, если выполняются вышеперечисленные требования. Если данные требования не выполняются, то дефектоскоп считается непригодным к применению, к эксплуатации не допускается, выписывается свидетельство о непригодности, дальнейшие пункты методики не выполняются.

4.5.2 Опробование

4.5.2.1 При опробовании проверяют:

 правильность прохождения теста при включении дефектоскопа, изображение цифр на дисплее должно быть четким.

– надежность крепления и фиксации преобразователей в механическом устройстве.

Если индицируется сообщение о необходимости заряда батареи или информация на дисплее дефектоскопа отсутствует, проводят необходимые операции по п. 2.2.2 РЭ.

4.5.2.2 Проверка работоспособности дефектоскопа на контрольном образие с искусственным дефектом. Проверка правильности расчета электронным блоком разности амплитуд прошедших сигналов на цельном материале и искусственном дефекте.

4.5.2.2.1 Установить преобразователи (1) в приспособление для проверки сварных швов на изделиях из листового проката (2) (рис.4.1). Поверхность образца для проверки работоспособности дефектоскопа (3) покрыть слоем машинного масла или литолом. Ослабить стопорный винт (6), установить расстояние между преобразователями $L \ge 50$ мм, установить преобразователи на образец (искусственный дефект обращен вниз).

4.5.2.2. При установке преобразователей добиться их полного прилегания к образцу совершая небольшие круговые перемещения, стопорный винт затянуть. Преобразователи должны располагаться с одной стороны от искусственного дефекта (4).

4.5.2.2.3 Подключить датчики при помощи коаксиальных кабелей, входящих в комплект дефектоскопа. Включить дефектоскоп. Перейти в режим «Измерение A_0 » (п. 1.4.6.2 РЭ). Провести измерение амплитуды сигнала при прохождении его через цельный участок (A_0), устанавливая коэффициент усиления (кнопки \leftarrow , \rightarrow) таким образом, чтобы показания дефектоскопа были в пределах границ линейности динамического диапазона. Установить отображение на экране дефектоскопа «А-Скан», повторить измерения.

4.5.2.2.4 Установить расстояние между преобразователями L (указано на образце), установить преобразователи на образец (рис.4.1 а), провести измерение A₀.

4.5.2.2.5 Если принятый ультразвуковой импульс переместился влево к началу координат (5), то измерения выполняются правильно.

Дефектоскоп сварных соединений АРМС-МГ4

а) – положение преобразователей при работе в режиме «Измерение А₀»;

б) - положение преобразователей при работе в режиме «Измерение Ас»;

Рисунок 4.1 – Схема установки преобразователей на образце при опробовании дефектоскопа

4.5.2.2.6 Выбрать форму вывода результатов измерений « A_0 » в виде числового значения, подобрать коэффициент усиления, чтобы показания дефектоскопа находились в границах динамического диапазона.

4.5.2.2.7 Провести три измерения A_0 , фиксируя показания дефектоскопа, вычислить среднее арифметическое значение $(\overline{A_0})$ из трех результатов измерений. Длительно удерживая кнопку **ВВОД** (не менее 3 секунд) перевести дефектоскоп в режим редактирования значения A_0 . При помощи кнопок \downarrow , \uparrow , \leftarrow и \rightarrow ввести среднее значение $(\overline{A_0})$ и нажать **ВВОД**. Перенести введенное значение, $\overline{A_0}$ в нижнюю строку дисплея нажав кнопку \downarrow .

4.5.2.2.8 Установить преобразователи по разные стороны от искусственного дефекта (4) (рис. 4.1 б), причем один преобразователь расположить вплотную к искусственному дефекту. Перевести дефектоскоп в режим измерения «Измерения A_C ». Провести три измерения амплитуды сигнала при прохождении его через сварное соединение (A_C), фиксируя значения A_C и разницу величин амплитуд сигналов, измеренных на цельном участке и на участке с дефектом (ΔA) (переход от показаний A_C к показаниям ΔA производится при помощи кнопки **ВВОД**), вычислить среднее арифметическое значение ($\overline{A_c}$) из трех результатов измерений.

4.5.2.2.9 Результаты измерений занести в протокол поверки (табл.1).

4.5.2.2.10 Вычислить разницу величин амплитуд сигналов, измеренных на цельном участке и на участке с дефектом по формуле:

$$\Delta A_i = A_0 - A_{Ci} \tag{4.1}$$

4.5.2.2.11 Определить наибольшую по абсолютной величине разницу между значением ΔA

по показаниям дефектоскопа и значением $\Delta A'$ вычисленное по формуле (4.1), $|\Delta A - \Delta A'|$.

4.5.2.2.12 Вычислить относительное ослабление сигнала при прохождении через искусственный дефект по формуле:

$$\delta = \frac{(\overline{A_0} - \overline{A_c})}{\overline{A_0}} \cdot 100\%$$
(4.2)

4.5.2.3 Дефектоскоп считается прошедшим опробование с положительным результатом, если $|\Delta A - \Delta A'| < 0,2$ или полученное значение $\delta > 10$ %.

4.5.3 Проверка идентификационных данных ПО.

4.5.3.1 Нажать и удерживать кнопку **РЕЖИМ** одновременно включить электронный блок кнопкой **ВКЛ**. На дисплее отобразятся идентификационные данные программного обеспечения.

4.5.3.2 Идентификационные данные ПО должны соответствовать значениям, приведенным в таблице 4.3.

Таблица 4.3

	Идентифика-	Номер версии	Цифровой идентифи-	Алгоритм вычис-
Наименование	ционное на-	(идентификаци-	катор программного	ления цифрового
программного	именование	онный номер)	обеспечения (кон-	идентификатора
обеспечения	программного	программного	трольная сумма ис-	программного
	обеспечения	обеспечения	полняемого кода)	обеспечения
Встроенное				
программное	ARMS-M	V1.01	5FF8	CRC16
обеспечение				

4.5.3.3. Дефектоскоп считается прошедшим поверку с положительным результатом, если идентификационные данные ПО соответствуют значениям, приведенным в таблице 4.3.

4.5.3.4. Если данные требования не выполняются, то дефектоскоп считается непригодным к применению, к эксплуатации не допускается, выписывается свидетельство о непригодности, дальнейшие пункты методики не выполняются.

4.5.4 Определение метрологических характеристик

4.5.4.1 Определение амплитуды и частоты зондирующего импульса

4.5.4.1.1 Собрать установку в соответствии с приведенной схемой (рис. 4.2).

4.5.4.1.2 Установить на компьютер программу связи, поставляемую вместе с синтезатором сигналов СС306, после чего включить синтезатор сигналов СС306 (далее – СС306) и запустить программу связи. На экране монитора появится панель управления СС306 (рис. 4.3):

4.5.4.1.3 Установить следующие параметры задаваемого импульса по каналу №1:

- форма сигнала А серия;
- знак сигнала +;
- делитель 20 дБ включить;
- амплитуда минус 40 дБ;
- ослабление на импульс 0 дБ;
- частота 2,5 МГц;

- задержка 50 мкс;
- длительность 3 мкс;
- пауза 5 мкс;
- количество импульсов 1.

Рисунок 4.2 – Схема автоматической установки для определения основных метрологических характеристик дефектоскопа

Projects\APME\Syn	thesizer_55_306_C\ARMS	5_1.553	X
😐 🖬	🔣 Сценарий	ዖ Помащь 🔄 🔥 🛛 программе	🧏 Выход
Поверка ГЗИ			
Выкод #1 Широкий диапазон Импульс Асерия Россия С	амплитуд 60+20дБ инус ВЫКЛ	Выход #2 Днапазон амплитуд бід Импульс А серия Гоерия Динус	Б ВЫКЛ
Знак сигнала	@ + @ -		
Делитель 20а5			
Амплитуда (дБ)	-45.0 🗘		
Ослабление на импульс (дБ)	0.0 🗘		
Частога (МГц)	2.50	Канал #2 выклю	4611
Задержка (икс)	50.300 糞		
Длительность (мкс)	3.000 🚔		
Пауза (мкс)	5.000 🤤		
Количество импульсов	1		
Синхронизация			
ABTO BITEMHAA (or 30)	Гактовый генератор	aposetis (%)	
 отрицательный 	С + положительный		👯 Показать ЗИ
Состояние (читается на син	гезатора)		
Выход #1 -А серия Ампл44	.92 дБ Частота - 2.500	диалазон ехода 3008 00 МГц Режим синир. Внешняя (от 3	и
Выкоа #2+ ВЫКЛ Ампл.+ 0.0	О дБ Частота - 0.000	00 МГа Полярность синк. Уровень синкр 31%	🖉 События USB
um energie DC20200	Cod-0000h Day		100k 00k 0000k

Рисунок 4.3 – Панель управления СС306

4.5.4.1.4 Канал №2 отключить. Установить запуск СС306 от ЗИ (зондирующего импульса) дефектоскопа. Синхронизация – внешняя (от ЗИ). Фронт отрицательный.

4.5.4.1.5 Коаксиальный разъем дефектоскопа, обозначенный меткой, подключить кабелем из комплекта к разъему «Вход ЗИ» ССЗО6. Второй разъем дефектоскопа подключить кабелем к

разъему «Выход№1» СС306. Включить дефектоскоп и перейти в режим «Измерение А₀».

4.5.4.1.6 Нажать на панели управления СС306 кнопку «Показать ЗИ». На экране монитора появится панель осциллографа (рис.4.4):

Рисунок 4.4 – Панель осциллографа Сигнал, поступающий на разъем «Вход ЗИ»

4.5.4.1.7 Установить диапазон амплитуд «Вход ЗИ» 150 В. Включить нагрузку 50 Ом. Нажать кнопку «Пуск» на электронном блоке дефектоскопа. Зафиксировать сигнал на панели осциллографа. Перемещая курсоры 1 и 2 определить амплитуду двухполярного зондирующего импульса.

4.5.4.1.8 Определить частоту зондирующего импульса. Установить курсор 1 на первый максимум зондирующего импульса. Установить курсор 2 на последний максимум зондирующего импульса. Определить длительность зондирующего импульса как разность времени между курсорами 1 и 2 «Разность красный – синий». Определить частоту зондирующего импульса по формуле:

$$v = \frac{n}{T},\tag{4.3}$$

где n – количество периодов колебаний; T – длительность зондирующего импульса, с.

4.5.4.1.9 Дефектоскоп считается прошедшим поверку с положительным результатом, если частота зондирующего импульса составляет (2,5 ± 0,13) МГц, амплитуда зондирующего импульса по положительной составляющей составляет не менее 40 В, амплитуда зондирующего импульса по отрицательной составляющей составляет не менее 40 В.

4.5.4.2 Определение максимальной чувствительности приемника дефектоскопа

4.5.4.2.1 Установить на дефектоскопе коэффициент усиления 50 дБ. Задать амплитуду сигнала с СС306 минус 60 дБ. Делитель 20 дБ – включить. Увеличивая коэффициент усиления дефек-

тоскопа добиться, чтобы показания дефектоскопа находились вблизи среднего уровня динамического диапазона (30±2) дБ. Вычислить максимальную чувствительность приемника дефектоскопа (U₁, мкВ) по формуле:

$$U_{1} = U_{0} \cdot 10^{(K_{\partial \min} + K_{a\min})/20} \cdot 10^{6}, \qquad (4.4)$$

где U_0 – максимальная амплитуда синтезатора сигнала CC306 ($U_0 = 1B$),

К_{∂min} – коэффициент ослабления делителя, дБ;

К_{атіп} – коэффициент ослабления аттенюатора СС306, дБ.

4.5.4.2.2 Дефектоскоп считается прошедшим поверку с положительным результатом, если максимальная чувствительность приемника дефектоскопа не превышает 110 мкВ.

4.5.4.3 Определение границ линейности динамического диапазона. Определение абсолютной погрешности измерения отношения амплитуд сигналов на входе приемника

4.5.4.3.1 Установить суммарный коэффициент ослабления аттенюатора СС306 минус 55 дБ (минус 20 дБ на делителе и минус 35 дБ на аттенюаторе).

4.5.4.3.2 Измерения проводить в режиме «измерение A_o».

4.5.4.3.3 Изменяя коэффициент усиления дефектоскопа добиться показаний на экране дефектоскопа равным минимальному A_{min} или близким к нему (15 ± 1) дБ;

4.5.4.3.4 Уменьшая коэффициент ослабления аттенюатора СС306 с шагом 5 дБ регистрировать показания дефектоскопа. Измерения проводить до тех пор, пока значения A_0 на экране дефектоскопа не достигнут значения близкого к максимальному A_{max} (45 ± 1) дБ

4.5.4.3.5 Определить разницу между показаниями дефектоскопа и коэффициентом ослабления аттенюатора ССЗ06:

$$\Delta K_i = A_{0i} - K_i, \qquad (4.5)$$

где i = 1....n

*К*_{*i*} – коэффициент ослабления аттенюатора СС306, дБ;

*А*_{0i} – показания дефектоскопа, дБ.

4.5.4.3.6 Определить постоянную составляющую смещения шкалы дефектоскопа:

$$\Delta \overline{K} = \frac{\sum_{i=1}^{n} \Delta K_{i}}{n}, \qquad (4.6)$$

где *п* – количество измерений.

4.5.4.3.7 Откорректировать значения коэффициента ослабления аттенюатора с учетом смещения:

$$K_{i}' = K_{i} + \Delta \overline{K} \tag{4.7}$$

4.5.4.3.8 Вычислить абсолютную погрешность измерения отношения амплитуд сигналов на входе приемника по формуле:

$$\Delta = A_{0i} - K'_i \tag{4.8}$$

4.5.4.3.9 Построить амплитудную характеристику приемного тракта (рис. 4.5). Определить верхнюю и нижнюю границу динамического диапазона.

Дефектоскоп сварных соединений АРМС-МГ4

Рисунок 4.5 – Амплитудная характеристика приемного тракта

4.5.4.3.10 Дефектоскоп считается прошедшим поверку с положительным результатом, если в диапазоне от 15 дБ до 45 дБ погрешность измерения отношения амплитуд сигналов на входе приемника не превышает ±1 дБ.

4.5.4.4 Определение диапазона установки усиления. Определение абсолютной погрешности установки коэффициента усиления

4.5.4.4.1 Установить суммарный коэффициент ослабления СС306 минус 25 дБ (минус 20 дБ делитель и минус 5 дБ аттенюатор). Изменяя коэффициент усиления дефектоскопа, установить показания дефектоскопа в пределах (30 ± 1) дБ.

4.5.4.4.2 Увеличить коэффициент ослабления СС306 на 5 дБ, коэффициент усиления дефектоскопа *Ки* увеличить так же на 5 дБ. Зафиксировать показания дефектоскопа.

4.5.4.4.3 Провести измерения не менее чем в 12 точках диапазона регулировки усиления каждый раз увеличивая коэффициент ослабления аттенюатора СС306 и коэффициент усиления дефектоскопа на одну и ту же величину. Зафиксировать показания дефектоскопа. Проводить измерения до тех пор пока суммарный коэффициент ослабления СС306 не станет максимальным минус 80 дБ (минус 20 дБ делитель и минус 60 дБ аттенюатор).

4.5.4.4 Построить зависимость между коэффициентом усиления дефектоскопа Ku_i и показаниями дефектоскопа A_{0i} в дБ (рис. 4.6).

4.5.4.4.5 Вычислить среднее значение показаний дефектоскопа во всем диапазоне измерения отношений сигналов:

$$\overline{A}_{0} - \frac{\sum_{i=1}^{n} A_{0i}}{n}$$
(4.9)

4.5.4.4.6 Вычислить абсолютную погрешность установки коэффициента усиления по формуле:

$$\Delta = A_{0i} - \overline{A_0} \tag{4.10}$$

Рисунок 4.6 – Зависимость показаний дефектоскопа от коэффициента усиления.

4.5.4.4.7 Для определения абсолютной погрешности установки коэффициента усиления на дефектоскопе при максимальном значении установить максимальный коэффициент усиления 75 дБ. Провести измерения A_o при максимальном коэффициенте усиления.

4.5.4.4.8 Вычислить погрешность дефектоскопа при максимальном коэффициенте усиления по формуле:

$$\Delta = (A_{\max} - \overline{A_0}) - (Ku_{\max} - Ku_n)$$
(4.11)

где A_{max} – показания дефектоскопа при максимальном коэффициенте усиления, дБ; Ки_{max} – максимальный коэффициент усиления, дБ;

Ku_n – последний коэффициент усиления дефектоскопа в предыдущей серии измерений, дБ.

4.5.4.4.9 Дефектоскоп считается прошедшим поверку с положительным результатом, если абсолютная погрешность установки коэффициента усиления составляет ±1 дБ в диапазоне от 5 до 75 дБ.

4.5.4.5 Определение отклонения частоты максимума преобразования ПЭП от номинального значения.

4.5.4.5.1 Включить тестер и войти в меню «Параметры ПЭП». Выбрать курсором, вращая ручку энкодера, строку меню «Синхр.» и нажать на ручку энкодера или на клавишу «← ». Установить в строке «Синхр. Генератора», вращая ручку энкодера, информацию «Внутр.» Нажать на клавишу « ×».

4.5.4.5.2 Собрать стенд (Рисунок 4.7) для контроля наклонных ПЭП. Подключить кабель №6 к разъёмам «ГИВ» и «П» тестера при измерении параметров совмещенных ПЭП.

Рисунок 4.7 – Схема подключения

4.5.4.5.3 Подключить к кабелю №6 проверяемый ПЭП и установить его на контрольный образец №3 из комплекта КОУ-2, предварительно смочив контактирующую с ПЭП поверхность образца жидкостью (водой или трансформаторным маслом).

4.5.4.5.4 Выбрать и активизировать энкодером строку меню «Режим 1». Установить в активизированной строке «Скорость УЗК, м/с», значение скорости ультразвуковых колебаний - 3250 м/с, а в строке «Образец» тип используемого образца - №3. Нажать клавишу 1. При этом отображение маркера изменится на красный цвет: функция управления задержкой маркера будет передана клавише « →» (уменьшение задержки) и « →» (увеличение задержки); функция управления длительностью маркера будет передана клавише « →» (уменьшение длительности) и клавише « →» (уменьшение длительности); функция управление усилением будет передана энкодеру при вращении его ручки.

4.5.4.5.5 Перемещая ПЭП по образцу установить его в таком положении, при котором амплитуда отраженного от отражателя эхо-сигнала по экрану тестера будет иметь максимальную величину.

4.5.4.5.6 Удерживая ПЭП на образце в положении максимальной амплитуды отраженного сигнала, энкодером установить амплитуду сигнала на экране тестера согласно рисунку 4.8, установить маркер согласно 4.5.4.5.4 в зоне отраженного сигнала.

Максимум отраженного сигнала должен быть выше середины экрана (выше стандартного уровня). Ширина маркера должна быть незначительно больше ширины импульса (эхо-сигнала) ≈ 0,8 – 1,0 размера клетки.

Рисунок 4.8 - Максимум отраженного сигнала введен в строб

4.5.4.5.7 Нажать клавишу «0» на передней панели тестера. На экране тестера появится радиосигнал отраженного импульса. Используя клавиши « →» или « », отрегулировать положение маркера так, чтобы в нем находилось не менее трех периодов радиосигнала (рисунок 4.9).

Рисунок 4.9 - Расположение радиосигнала в стробе

4.5.4.5.8 Нажать на клавишу « - », зафиксировать результаты измерений частоты, которые выводятся на экран дисплея в левом верхнем углу.

4.5.4.5.9 Отклонение частоты максимума преобразования ПЭП рассчитать по формуле:

$$\Delta f = F_{\mu} - F \,, \tag{4.12}$$

где *F* – номинальная частота преобразования ПЭП, МГц;

*F*_{*u*}-измеренная частота преобразования ПЭП, МГц.

4.5.4.5.10 Дефектоскоп считается прошедшим поверку с положительным результатом, если отклонение частоты максимума преобразования от номинального значения составляет ±0,2 МГц.

4.5.4.6 Определение отклонения угла ввода ПЭП от номинального значения.

4.5.4.6.1 Проверяемый ПЭП установить на контрольный образец №2 из комплекта КОУ-2, предварительно смочив его контактирующую с ПЭП поверхность жидкостью (водой или трансформаторным маслом). Акустическую ось ПЭП ориентировать на выявление отражателя – отверстие диаметром 6 мм.

4.5.4.6.2 Выбрать и активизировать строку меню «Режим 2» и установить скорость ультразвуковых колебаний - 3250 м/с, а также глубину залегания отражателя - 15 мм.

4.5.4.6.3 Нажать клавишу 2. При этом отображение маркера изменится на зелёный цвет: функция управления задержкой маркера будет передана клавише « ✓ » (уменьшение задержки) и « ▷ » (увеличение задержки); функция управления длительностью маркера будет передана клавише « △ » (увеличение длительности) и клавише « ▽ » (уменьшение длительности); функция управления усилением будет передана энкодеру при вращении его ручки.

4.5.4.6.4 Перемещая ПЭП по образцу установить его в таком положении, при котором амплитуда отраженного от отражателя эхо-сигнала по экрану тестера будет иметь максимальную величину. Регулируя усиление энкодером, установить амплитуду А_{max} сигнала на экране примерно на два деления вертикальной шкалы выше линии маркера. Установить маркер таким образом, чтобы при сканировании ПЭП по поверхности образца огибающая эхо-сигналов от отражателя находилась в зоне маркера в пределах значения амплитуды примерно 0,3 А_{max}. Провести сканирование ПЭП по поверхности образца с одновременной зарисовкой на экране тестера основного лепестка диаграммы направленности, перемещая ПЭП несколько раз вперед и назад от положения максимума амплитуды огибающей эхо-сигнал до значения примерно 0,3 А_{max}. При необходимости

«стереть» неудачно выполненную зарисовку диаграммы, нажав клавишу « ×», и повторить процесс зарисовки.

4.5.4.6.5 Нажать клавишу 0 и зафиксировать результат измерения угла ввода α_{max}, значение которого выводится на экран дисплея в правом верхнем углу. Для выхода из режима надо нажать клавишу 0.

4.5.4.6.6 Отклонение угла ввода ПЭП от номинального значения рассчитать по формуле:

$$\Delta \alpha = \alpha_{u} - \alpha, \qquad (4.13)$$

α – номинальный угол ввода ПЭП по техническим характеристикам, градус;

*α*_{*u*} – измеренный угол ввода ПЭП, градус.

4.5.4.6.7 Дефектоскоп считается прошедшим поверку с положительным результатом, если отклонение угла ввода от номинального значения составляет $\pm 2^{\circ}$.

4.6 Оформление результатов поверки

4.6.1 Результаты поверки должны быть оформлены протоколом по форме, приведенной в приложении Г.

4.6.2 На дефектоскоп, прошедшей поверку с положительным результатом, выдают свиде-

тельство о поверке установленной формы.

4.6.3 На дефектоскоп, не прошедший поверку, выдают извещение о непригодности к применению или делают соответствующую запись в эксплуатационной документации.

5 Хранение

4.1 Упакованные приборы должны храниться в закрытых сухих вентилируемых помещениях в не распакованном виде. Условия хранения в части воздействия климатических факторов должны соответствовать группе условий 2 (С) по ГОСТ 15150

4.2 В воздухе помещения для хранения дефектоскопа не должно присутствовать агрессивных примесей (паров кислот, щелочей).

4.3 Срок хранения дефектоскопа в потребительской таре без переконсервации – не более одного года.

6 Транспортирование

5.1 Допускается транспортирование дефектоскопа в транспортной таре всеми видами закрытого транспорта.

Условия транспортирования в части воздействия климатических факторов должны соответствовать группе 2 С по ГОСТ 15150.

5.2 При транспортировании дефектоскопа должна быть предусмотрена защита от попадания пыли и атмосферных осадков.

Таблица 1 – Оценка качества сварного соединения горяче	екатаной арматуры в зависимости от ве-
личины ΔА.	

		Значение амплитуды ΔА						
		Тип сварного соединения						
Пиомотр				Стыковое в несу	/щих и форми-			
диаметр	болнох	Стыковое в инве	ентарной форме	рующих элемен	тах и на сталь-			
стержней, мм	баллах			ной скобе	накладке			
			Положен	ие ПЭП				
		1-1, 3-3	2-2	1-1, 3-3	2-2			
	1	больше 14	больше 16	больше 16	больше 13			
20-25	2	6<ΔA<14	8< ΔA <16	$12 < \Delta A < 16$	9< ΔA <13			
	3	меньше 6	меньше 8	меньше 12	меньше 9			
	1	больше 16	больше 18	больше 16	больше 15			
28-32	2	7<ΔA <16	$10 < \Delta A < 18$	$12 < \Delta A < 16$	$9 < \Delta A < 15$			
	3	меньше 7	меньше 10	меньше 12	меньше 9			
	1	больше 16	больше 20	больше 20	больше 17			
36-40	2	8<ΔA <16	$12 < \Delta A < 20$	$16 < \Delta A < 20$	$11 < \Delta A < 17$			
	3	меньше 8	меньше 12	меньше 16	меньше 11			

Таблица 2 — Оценка качества сварного соединения термически упроченной арматуры в зависимости от величины ΔA .

Диаметр стерж- ня, мм баллах		Значение амплитуды для всех положений ПЭП ΔA			
		Стыковое в несущих и формующих элементах и на стальной			
		скобе-накладке			
	1	больше 18			
20-25	2	12< ΔA<18			
3		меньше 12			
	1	больше 20			
28-32	2	$14 < \Delta A < 20$			
3		меньше 14			
	1	больше 24			
26-40	2	$16 < \Delta A < 24$			
	3	меньше 16			

Таблица 1 – Расстояние между ПЭП при ультразвуковом контроле стыковых сварных соединений арматуры одинакового диаметра.

	Угол	л Установочное расстояние L±5, мм						
Тип сварного соединения	ввода	Номин	Номинальный диаметр арматуры, мм					
	град.	20	22	25	28	32	36	40
Стыковое в инвентарной форме	65	85	85	00	05	100	105	110
горизонтальное	05	65	65	90	95	100	105	110
Стыковое в инвентарной форме	65	05	100	110	115	125	135	145
вертикальное	05))	100	110	115	123	155	145
Стыковое на стальной скобе-								
накладке, горизонтальное и вер-	65	85	95	105	120	135	155	170
тикальное								

Таблица 2 – Расстояние между ПЭП при ультразвуковом контроле стыковых сварных соединений арматуры различных диаметров.

	VEGE PROFO	DU	Установочное расстояние L±5, мм					
Метод контроля	УТОЛ ВВОДа	DH,	DH, Номинальный диаметр арматуры, мм					
-	трад.	MM	22	25	28	32	36	40
	65	20	85	90	95	100	105	110
		22		95	100	105	110	115
Bankan na Tanapaŭ		25			110	115	120	125
зеркально - теневои		28				125	130	135
		32					140	145
		36						160

Состав и способ приготовления акустического контактного вещества типа АКВ.

АКВ-1

Синтетический клей КМЦ (ТУ 2231-001-53535770-01) (кабоксиметилцеллюлоза) - 9 – 12 % Вода – остальное

АКВ-2

Синтетический клей КМЦ – 9 – 12 % Вода – 50 % Спирт этиловый 40 – 50 % - остальное

Остатки контактного вещества не удалять, если промежуток времени до начала бетонирования составляет не более 2-х суток.

Способ приготовления: 100 г. синтетического клея высыпать в стеклянную или эмалированную посуду и залить все водой до 1 литра для АКВ-1 или до 0,5 литра для АКВ-2 температура воды 60-80°С. Содержимое тщательно перемешать, закрыть крышкой и оставить набухать в течении 24 часов. Для приготовления АКВ-2 после набухания добавить 40 – 50% раствор этилового спирта до 1 литра, тщательно перемешать и закрыть крышкой.

Срок хранения вещества без изменения его акустических свойств, в герметичной таре: AKB-1 – 3-4 месяца; AKB-2 – 3 месяца. Примерный расход – 40-60 мг на один стык.

Состав АКВ-2 применяется при температуре окружающей среды от 0 до минус 20°С. При температуре окружающей среды ниже минус 10°С следует осуществлять предварительный нагрев контролируемого соединения до температуры 30-50°С.

Приложение Г

ПРОТОКОЛ	I ПОВЕРКИ №
Дефектоскоп сварн	ных соединений АРМС-МГ4
OT «	_»201 г
Заводской номер	
Дата выпуска	
Принадлежит	
Вид поверки (первичная, периодическая)	
НД по поверке	
Средства поверки:	
Условия поверки:	температура окружающего воздуха,°С
	относительная влажность, %
Результаты поверки:	
Результаты внешнего осмотра	

Результаты опробования

Метрологические характеристики

Mothonorumo vanartonucturu	Значение характеристик		
метрологические характеристики	нормированное	действительное	
Амплитуда зондирующего импульса, В	не менее 40		
Частота зондирующего импульса, МГц	2,5±0,13		
Максимальная чувствительность приемника дефектоскопа, мкВ, не более	110		
Границы линейности динамического диапазона			
- Amin,дБ	15		
Amax, дБ	45		
Абсолютная погрешность измерения отношения амплитуд сигналов на входе приемника, дБ	±1		
Диапазон установки коэффициента усиления, дБ	от 5 до 75		
Абсолютная погрешность установки коэффициента усиления, дБ	±1		
Отклонение частоты максимума преобразова- ния от номинального значения, МГц,	± 0,2		
Отклонение угла ввода от номинального зна- чения, градус	± 2		

Заключение по результатам поверки _____

Поверитель _____

Выдано свидетельство о поверке _____

_____ от "____"____201 г. №

Выдано извещение о непригодности № _____ от "___" ____ г.

Приложение к протоколу поверки №____ от _____

стр. 1 из 2

Дефектоскоп сварных соединений АРМС-МГ4 №

Таблица 1 – Проверка правильности расчета электронным блоком разности амплитуд прошедших сигналов на цельном материале и искусственном дефекте

<i>А</i> ₀ , дБ	А ₀ ,дБ	<i>Ас</i> , дБ	,дБ	ДА, дБ по показаниям дефектоскопа	$\Delta A' = \overline{A}_0 - A_C$ (вычисленное)	$\Delta A - \Delta A^{'}$
$\delta = \frac{(\overline{A_0} - \overline{A_C})}{\overline{A_0}} \cdot 100\%$		$\delta = \frac{()}{2}$	$) \cdot 100\% =$			

Таблица 2 – Определение границ линейности динамического диапазона и абсолютной погрешности измерения отношения амплитуд сигналов на входе приемника

<i>К</i> і, дБ	<i>А</i> ₀ , дБ	$\Delta K = A_{0i} - K_i$	$K'_i = K_i + \Delta \overline{K}$	Верхняя граница, дБ	Нижняя граница, дБ	Δ, дБ

Таблица 3 – Определение диапазона установки усиления и абсолютной погрешности установки коэффициента усиления

Коэффициент ослабления аттенюатора, <i>К</i> _i , дБ	Коэффициент усиления де- фектоскопа, Ku, дБ	Показания дефектоскопа, А _{0i} , дБ	$\overline{A} - \frac{\sum_{i=1}^{n} A_{0i}}{n}$	$\Delta = A_{0i} - \overline{A}$	Допускаемая погрешность, дБ
$\Delta = (A_{\max} - \overline{A}) - (Ku_{\max} - Ku_n)$			$\Delta = (-)$	-(-)	=

Приложение к протоколу поверки №____ от _____

4 Определение метрологических характеристик ПЭП

Паспорт

Дефектоскоп сварных соединений

АРМС-МГ4

1 ОБЩИЕ СВЕДЕНИЯ ОБ ИЗДЕЛИИ

1.1 Дефектоскоп предназначен для измерения амплитуды ультразвукового сигнала при контроле качества сварных стыковых соединений арматуры в соответствии с ГОСТ 23858 и СТО 02495307-002-2008. Дефектоскоп может быть использован так же для контроля качества сварных стыковых соединений труб большого диаметра и листового проката зеркально теневым методом при непосредственной установке ультразвуковых преобразователей без протектора по ГОСТ 14782.

Дефектоскоп является переносным прибором для ручного контроля специального назначения. Использует теневой и зеркально-теневой метод контроля при работе с ультразвуковыми пьезоэлектрическими преобразователями (в дальнейшем ПЭП), на номинальной частоте 2,5 МГц.

Для обеспечения акустического контакта между поверхностью преобразователя и поверхностью изделия используется специальная контактная смазка.

Область применения – контроль качества сварных стыковых соединений арматуры в строительстве, машиностроении, энергетике, металлургической промышленности, на транспорте и в других отраслях.

1.2 Условия эксплуатации:

- температура воздуха от минус 10 °C до плюс 40 °C;
- относительная влажность воздуха до 95 %;
- атмосферное давление от 84 до 106,7 кПа.

2 ТЕХНИЧЕСКИЕ И МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование характеристики	Значение характеристики
1	2
Динамический диапазон приемного тракта дефектоскопа, дБ	от 0 до 50
Границы линейности динамического диапазона Amin, дБ	15
Amax, дБ	45
Пределы допускаемой абсолютной погрешности измерения отно-	
шения амплитуд сигналов на входе приемника, дБ	±1
Диапазон установки коэффициента усиления, с шагом, дБ	5-75; 1; 5; 10
Пределы допускаемой абсолютной погрешности установки коэф- фициента усиления, дБ	± 1
Частота зондирующего импульса, МГц	$2,5 \pm 0,13$
Амплитуда зондирующего импульса при нагрузке 50 Ом, В, не менее	40
Цена единицы наименьшего разряда, дБ	0,1
Максимальная чувствительность приемника дефектоскопа, мкВ, не более	110
Номинальная частота максимума преобразования ПЭП, МГц	2,5

Дефектоскоп сварных соединений АРМС-МГ4

1	2
Отклонение частоты максимума преобразования от номинального значения, МГц, не более	$\pm 0,2$
Номинальное значение угла ввода ПЭП, градус	65
Отклонение угла ввода от номинального значения, градус	± 2
Габаритные размеры, не более: - электронного блока, мм - механического устройства с датчиками, мм	175x78x25 300x100x80
Электропитание от встроенного аккумулятора, напряжение, В	3,7
Потребляемая мощность в режиме измерения, Вт, не более	0,5
Масса дефектоскопа, кг, не более	2,0
Средняя наработка на отказ, ч, не менее	20000
Средний срок службы, лет	10

Таблица 1 – Идентификационные данные программного обеспечения

Наименова- ние про- граммного обеспечения	Идентифика- ционное на- именование программного обеспечения	Номер версии (идентифика- ционный но- мер) программ- ного обеспече- ния	Цифровой идентификатор программного обеспече- ния (контрольная сумма исполняемого кода)	Алгоритм вы- числения циф- рового иденти- фикатора про- граммного обес- печения
Встроенное программное обеспечение	ARMS-M	V1.01	5FF8	CRC16
ПО ПК	АРМС-МГ4	V1.0.0.1	Daa202c53c3db40204eb26f eb0659e5a	MD5

3 КОМПЛЕКТ ПОСТАВКИ

Электронный блок	1 шт.
Пьезоэлектрический преобразователь (ПЭП) 2,5МГц	2 шт.
Механическое устройство для крепления ПЭП	1 шт.
Коаксиальный кабель	2 шт.
Протектор $R = 12$ мм	2 шт.
Протектор $\mathbf{R} = 18$ мм	2 шт.
Протектор $R = 22$ мм	2 шт.
Приспособление для контроля сварных швов листового проката	1 шт.
Контрольный образец	1 шт.
Кабель интерфейса USB	1 шт.
USB-флеш-накопитель с программным обеспечением	1 шт.
Зарядное устройство	1 шт.
Руководство по эксплуатации КБСП.427611.046 с методикой поверки	1 экз.
Приспособление «Скоба» [*]	1 шт.
Арматура с искусственным дефектом*	1 шт.

* поставляется по спецзаказу

4 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

4.1 Изготовитель гарантирует соответствие дефектоскопа требованиям нормативной технической документации при условии соблюдения потребителем правил эксплуатации и хранения, установленных в настоящем руководстве по эксплуатации.

4.2 Срок гарантии устанавливается 18 месяцев с даты продажи дефектоскопа.

4.3 В течение гарантийного срока безвозмездно устраняются выявленные дефекты.

Гарантийные обязательства не распространяются на дефектоскопы с нарушенным клеймом изготовителя и имеющие грубые механические повреждения.

Адреса разработчика-изготовителя ООО "СКБ Стройприбор": Фактический: г.Челябинск, ул. Калинина, 11-Г, Почтовый: 454084 г. Челябинск, а/я 8538 тел./факс в Челябинске: (351) 277-8-555; в Москве: (495) 134-3-555. e-mail:info@stroypribor.ru www.stroypribor.com

5 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

5.1 Дефектоскоп сварных соединений АРМС-МГ4 № _____ соответствует требованиям ТУ 4276-046-12585810-2012 и признан годным к эксплуатации.

Дата выпуска «____» ____ 20___г.

М.П. ______ (подпись лиц, ответственных за приемку)

ПОВЕРКА ВЫПОЛНЕНА

знак поверки (поверитель, подпись и Ф.И.О.)

Дата поверки «____»____ 20 г.

6 СВЕДЕНИЯ О ПЕРИОДИЧЕСКОЙ ПОВЕРКЕ

Запись о проведен-	Дата поверки,	Подпись	Расшифровка
ной поверке	знак поверки	поверителя	подписи

Дефектоскоп сварных соединений АРМС-МГ4